

Game Engine Driven, Real-Time
Visualisation of Commercial UAV

Operations with Varied Data Needs
Lindsey Mackie

BSC(Hons) Computer Game Technology,2020

School of Design and

Informatics

Abertay University

i

Table of Contents

List of Figures .. iii

List of Tables ... iv

Acknowledgements .. v

Abstract ... vi

Abbreviations, Symbols and Notation .. viii

1 Introduction .. 9

1 Literature Review ... 12

1.1 Use of Game Technology Outside of the Games Industry .. 12

1.2 Approach to Specification Based Adaptability .. 13

1.3 Middleware Solutions ... 14

1.4 UAV Technology .. 15

2 Methodology .. 16

2.1 Early Technology Decisions ... 16

2.2 Adaptable Parsing Plug-In ... 17

Setting Up Network Components ... 18

2.2.1 Message Parsing .. 19

2.3 MultiWii Connecting Middleware ... 20

2.4 Visualisation Application ... 22

2.4.1 Movement Replication .. 22

2.4.2 GPS map ... 24

2.4.3 Speed Display ... 25

2.4.4 Measuring Distances in Flight .. 26

Planned Testing .. 27

2.4.5 Adaptable Parser Testing ... 27

2.4.6 Visualisation Testing .. 27

3 Results and Discussion .. 28

3.1 Measuring the Accuracy of Conversion Within the Parser 28

3.2 Visualisation Testing .. 31

3.2.1 GPS Driven Functionality.. 32

3.2.2 2D Map Location .. 32

ii

3.2.3 Distance Monitoring .. 32

3.2.4 Ground Speed Calculations .. 33

3.2.5 General Observations during Element Testing .. 33

3.3 Whole Solution .. 34

3.3.1 Functional Testing .. 34

4 Conclusion .. 36

4.1 Limitations and Future Work .. 36

5 List of References ... 38

6 Bibliography .. 40

7 Appendices ... 41

7.1 Appendix 1 - Desktop flight controller .. 41

7.2 Appendix 2 – Required Python Libraries ... 42

7.3 Appendix 3 – Visualisation User Interface Design .. 43

iii

List of Figures

Figure 3-1 General Interaction of Component Systems .. 16

Figure 3-2 Arduino Nano flight controller.. 20

Figure 3-3 layout mock-up of visualization application (further detail see Appendix 3) 22

Figure 3-4 GPS to NED conversion ... 23

Figure 3-5 2D map functionality .. 24

Figure 3-6 2D map marker position ... 25

Figure 3-7 rounding with hysteresis .. 25

Figure 3-8 haversine formula (GIS MAP INFO, 2015), ... 26

Figure 4-1 Conversion Accuracy Charted Results .. 30

Figure 4-2 visualisation in use .. 31

Figure 8-1 flight controller wiring .. 41

iv

List of Tables

Table 1 Hardware used for parser testing ... 28

Table 2 conversion accuracy results – floats and doubles .. 30

Table 3 testing hardware ... 34

Table 4 flight controller components .. 41

v

Acknowledgements

Dr David King for all the advice and support to get this project completed, and pushing me

to get the writing done early enough to actually be able to finish it in time.

Blair Nichols and Cynthia MacLeod at Cloud3D for all the technical support, hardware and

generally dealing with my complete and persistent absence of knowledge on everything

UAV.

Chris, thanks for dealing with me while I stressed out and drank dangerous amounts of

coffee to get this finished, I couldn’t have done it without your support.

vi

Abstract

Context:

Game Engines are being used with increasing frequency beyond the games industry.

With powerful real-time rendering and support for a wide range of platforms; game

engines are an appealing option for creating highly visual experiences and tools. For

the Unmanned Arial Vehicle (UAV) industry, visualisations for remote systems can be

extremely useful for understanding system behaviours and maintaining control.

Game Engines have potential to drive solutions in this field, but to maximise their

usefulness they must support the varied nature of UAV hardware and data

requirements in commercial UAV operations.

Aim:

To prototype a networked real-time UAV flight visualisation system using a popular

game engine, capable of adaptable parsing of data streams to support varied

operational hardware and data streams.

Method:

Implementing a real-time visualisation in Unreal Engine 4.23 (UE4), as a series of

components which interact and form the complete solution. Using the plugin system

of UE4 to develop the parsing solution, and developing middleware to handle direct

communication with UAV hardware and provide the required data stream.

Results:

It was seen that the parsing solution implemented; allowed an adaptable and mostly

accurate system to be maintained - there was some accuracy loss seen with floats

and doubles which needs to be addressed - where it was adaptable only when the

application was not currently running. While the visualisation produced showed

promise as a system to support safe operation of UAV systems, although there were

limitations on testing this under operational conditions.

vii

Conclusion:

Overall the project served as a demonstration of a potential use of games technology

within the UAV industry, although both the parser and the final visualisation both

have scope to improve. The parser could be expanded to support a wider range of

data types and include data conversions. While the visualisation could benefit from

further flexibility to be included in the UI, and still requires field testing to confirm its

complete functionality.

viii

Abbreviations, Symbols and Notation

VR - Virtual Reality

UAV - Unmanned Arial Vehicle

UE4 - Unreal Engine 4

IP - Intellectual Property

FAA - Federal Aviation Administration

CAA - Civil Aviation Authority

DRL - Drone Racing League

MSP - MultiWii Serial Protocol

MSPv.2 - MultiWii Serial Protocol Version 2

UI - User Interface

9

1 Introduction

Recent years have seen considerable expansion of games technology beyond the games

industry and into other fields. Such as Architecture, Automotive and Film to name a few

industries now making use of games technologies in a variety of ways. This shift in industry

has not gone unnoticed by major Game Engine creators, who are now creating and

maintaining specialised services and functionalities to support other industries now using

their products.

This increase in uptake of Game Engine based solutions, has been in part due to growing

recognition of Game Engines’ capacity to handle high-fidelity real-time renders. Where

presenting high quality visuals is an important but often time-consuming task with previous

workflows, Game Engines are becoming an increasingly practical solution, helping to speed

up processes. In many cases also improving end results and introducing possibilities for

interactivity that were not practical or possible before.

A great example of the expansion of Game Engine uses is the automotive industry; with

major manufacturers finding a variety of ways Game Engine driven solutions can benefit

their businesses. BMW and Mini have found that by using Unreal Engine (UE4), they have

been able to create a mixed reality design tool; combining custom hardware with Virtual

Reality (VR) (Sloan, 2018). This has provided designers with the ability to perform more

experimentations, to make key decisions earlier and increase the time available for iteration

and refinement of designs for deadlines and finalisation.

Another factor driving this shift towards using Game Engine based solutions, is the desire for

companies to maintain control over their Intellectual Property (IP). Using game engines

enables companies to produce applications inhouse - without reliance on external suppliers

for delivery and maintenance - allowing complete control over their IP. This control of IP is

particularly important for growing and highly competitive industries where inhouse

development is a key priority, for example the Unmanned Aerial Vehicle (UAV) industry.

Like Game Engines, the UAV industry has seen a surge, in both recreation and commercial

sectors, with hobbyists and commercial operations all developing and experimenting with

potential new uses and functionalities. Recent reports and forecasts on the industry in the

10

USA, based on assessment by the Federal Aviation Administration (FAA), highlighted key

trends in both Model (hobbyists) and Non-Model/Commercial sectors. With the model

sector having seen considerable growth but expected to reach a peak in around 5 years.

While the non-model sector’s growth has exceeded last year’s prediction of a 44% growth in

registered craft by around 80% more than expected; and growth is predicted to not only

continue but accelerate in the near future (Federal Aviation Administration, 2019).

There is already some overlay with UAV use and the gaming industry, namely with the

increasing popularity of Drone Racing, with the Drone Racing League (DRL) world

championship having racers who have gained their place in the competition through game-

based platforms, specifically the DRL simulator (Swatch, 2018). This existing overlap is just

one area where games technology is beneficial to UAVs.

This project will look at how a popular Game Engine can be used to drive visualisations of

commercial UAV operations via network-based communication with existing systems.

Looking specifically at those for which the hardware and data needs can vary based on the

operation being carried out. With the aim to create a flexible system, based around a local

company’s manufacturing and practical uses of UAV systems, defining common

requirements and existing limitations which could be addressed through the use of game

technologies, such as game engines.

11

Research Question:

How can Game Engines be used to drive real-time visualisations for commercial UAV

systems with varied data stream requirements?

To achieve this the following key objectives have been identified:

• Implement an extension to an appropriate game engine to automatically handle

network setup and real-time data parsing

• Identify and implement an appropriate solution for integrating UAV data into engine

• Analyse and evaluate the solutions performance in relation to the handling of varied

data stream formats, and its maintenance of a reasonable degree of accuracy for

monitoring remote UAVs

• Evaluate the effectiveness of the solution for supporting safe operation of UAVs

carrying out flights beyond line of sight communication

• Identify limitations of the solution and suggest areas for improvement

The following literature review will discuss existing trends in the use of games technology

outside of the games industry, flexible approaches to networking and data parsing and the

current state of the UAV industry. With later chapters discussing the methodology

employed for designing and implementing end solution; followed by a discuss of the results

achieved when testing the produced artefacts.

12

1 Literature Review

1.1 Use of Game Technology Outside of the Games Industry

A main influence on this project has been the expansion of Game Technology of various

forms beyond the Games Industry; becoming increasingly popular options for solutions in a

growing number of industries. With hardware platforms such as the HTC Vive being

accessible - even for small companies – for use when developing and presenting visual

experiences using VR. This type of use can be seen in architecture firms who have used VR

to provide walkthroughs of spaces; and automotive companies allowing customers and

engineers to ‘see’ and walk around vehicles to assess design choices. Alongside hardware

uptake, Game Engines such as UE4 and Unity are also gaining popularity as development

platforms outside of the Games Industry. Providing powerful real-time rendering capabilities

and opportunities to create highly interactive and visual applications for a wide variety of

purposes. For example the automotive industry, using the likes of UE4, to drive online car

configurators; creating high quality and often photorealistic renders from customer

specifications, in real-time; as demonstrated by Epic Games and McLaren Automotive at

GDC2016 (Crecente, 2016), and even to create Mixed Reality tools to support the design

process (Sloan, 2018).

When looking at how current game technology can be used to support operations with

UAVs a few areas had to be researched to determine an appropriate approach to handling

the issues discussed with Cloud3D; a local company specialising in bespoke technology

solutions including UAVs. Mainly regarding easily viewing information received from UAV

systems in flight; with particular difficulties concerning video feeds. Video feeds experience

the most degradation over distance and are prone to being lost entirely, leaving operators

with little information regarding the UAVs behaviour and orientation. This is the main

problem this project aims to address, by providing a visualisation of critical data to allow

operators to more easily understand information and reduce the cognitive load involved in

doing so, by using graphic displays over constantly changing numerical values. Due to the

variety of UAV systems that Cloud3D work with, the solution will need to work with varied

data streams and conduct real-time parsing, without needing code changes to

accommodate different data streams. For this reason, important areas for research included

13

adaptive parsing, defining network characteristics for flexible uses, and existing UAV

technologies.

1.2 Approach to Specification Based Adaptability

In relation to this project, the main need for an adaptable solution comes from a

requirement to be able to handle varied data needs and availability, e.g. UAVs with different

purposes will have variations in hardware and the structure of data produced. So, an

important area for research was designs and approaches to handling similar problems;

namely how to create a flexible solution by having functionalities derived from user

specifications.

Looking first at research into creating new network protocols. One method trialled using a

declarative language, producing a solution to allow developers to specify requirements and

then have the protocol automatically compiled and executed (Loo et al., 2009). In the

context of this project, a declarative language is out of scope due to the existing language

support offered within the chosen Game Engine. However, the idea that by automatically

handling implementation, developers are better able to focus on high level design, rather

than the specifics of implementing requirements; helps to provide a context as to why this

project can be of practical use. Another approach to protocol creation was using composite

protocols (Minden at al., 2002); combining smaller reusable components to provide specific

functionalities as required by a given specification in order to create new protocols. Both

approaches although different in implementation; looked to simplify the development of

protocols – a historically complicated area of development- through the use of

specifications and separating the developer from the actual implementation when creating

a variety of new protocols.

A further area of interest was approached to parsing data streams; specifically working with

heterogenous data streams – where the contents of the stream contains multiple datatypes.

The grammar-based method was of particular interest; making use of the high degree of

expressiveness offered by a grammar-based system to automatically produce parsers while

maintaining generality and technology independence (Campanile et al.,2007). The solution

created was applied to and tested using a real-time billing processing system; results stated

significant performance improvements, compared to the previous setup. However, when

14

comparing the streamed implementation using the automatically produced parsers and the

original buffer system they only worked with specific, processed log files. Although the

results discussed show practical performance improvement, little mention of specific testing

for adaptability of the system is made. This approach was of particular interest as the

problem is extremely similar to that being considered in this project. However, in the

approach and the specific application discussed there is not the same emphasis on the need

for the system to be real-time. A billing system can easily cope with delays if necessary, but

when handling visualisation of a physical system unexpected delays could be extremely

detrimental to the applications basic functionality. This difference in real-time sensitivity will

need to be carefully managed if using methods based on this approach.

1.3 Middleware Solutions

Following discussions with a local UAV industry specialist – Cloud3D - regarding the variety

of technologies available and current systems in use; an appropriate method of linking

existing UAV technology and the game engine had to be selected. Due to the variety of

software and hardware available within the UAV industry, a specific solution created within

the game engine would greatly limit the flexibility of the resulting application and require

significant work to extend. For this reason, a middleware solution to collect data from UAV

hardware and send it via a network connection was selected as an appropriate method for

the scope of this project as it avoided the plugin or visualisation application becoming

limited to a particular UAV platform.

Looking at work done to extend an existing general-purpose networked middleware

solution to support real-time systems, highlighted specific approaches which can be taken to

improve performance to support the requirements of time sensitive systems. Working with

Etherware as a basis and making various extensions to improve performance with real-time

control systems (Kyoung-Dae Kim and Kumar, 2013). Specifically introducing an idea of

“Quality of Service” to prioritise and schedule messages appropriately and extending

existing scheduling methods to allow concurrent execution of multiple components.

While the middleware solution produced during this project will be as simplistic as possible

as it is being developed to support development and testing of a prototyped UAV

visualisation, so is not the focus of this project. The ideas discussed in the above work

15

provide important guidance on approaches to maintain necessary performance and are also

applicable at least in part to improving performance on the parsing system which will be

receiving data for the visualisation.

1.4 UAV Technology

Based on UAV technology decisions made early on; following research and discussion with

industry specialists on availability of software, hardware and support for different options. It

was decided that a MultiWii flight controller-based system would be an appropriate UAV

platform to use for development. This being mainly due to the ease of access to both

hardware and software, and the variety of UAV configurations supported by MultiWii.

Additionally, with MultiWii being a popular choice for many custom UAV/drone builders it

was possible to locate a variety of forums and free to use code modules to work with the

MultiWii Serial Protocol (MSP). The main downside to working with MultiWii is the reliance

on publicly editable forums and wikis for technical information as there is no official fixed

documentation for this platform.

It was also important to consult the Civil Aviation Authority (CAA) website to determine

what limitations currently exist across the UAV industry, and critically which if any apply to

any part of this project. This has to remain an ongoing process for the duration of the

project; due to developing legal limitations and policy regarding use of UAV technology in

regard to both private and commercial use. Such as the introduction - in November 2019 –

of the requirement to register all drones and pass theory tests before being allowed to

conduct flights in the UK (CAA,2019); this applying across the board to all UAV systems

including those marketed as toys. This is a critical change in the law during the course of the

project and will have an impact on the testing options which are easily available when

considering how live testing can be conducted.

Based on the research conducted the following chapter will detail an approach to a flexible

solution which can be adapted to the needs of specific data streams through the use of

formatting files to provide key data to drive component setup and functionality.

16

2 Methodology

In order to produce the visualisation application with the ability to support a variety of UAV

hardware; implementation has been divided into 3 key areas for development - a plug-in for

UE4 providing adaptable parsing, middleware for interfacing with a variety of UAV

hardware, and the UAV visualisation application

itself. This was done to separate specific

functionality; allowing the development process to

be better managed, and to improve the overall

flexibility of the resulting solution by maintaining the

hardware independence of the visualisation

application as far a reasonably possible in the scope

of this project. This section will discuss the approach

taken in the development of these key components,

and detail how specific critical functionality has been

implemented in each development area.

2.1 Early Technology Decisions

Due to the nature of the project, there was a large selection of possible technology choices

available for various aspects of development. So, it was important to narrow down specific

technology to a small selection of appropriate options for this project; while not

unnecessarily ruling out future expansion of supported technologies such as different UAV

flight controllers and hardware.

Unreal Engine 4.23 was selected as the game engine to be used to drive the visualisation.

Using UE4 allowed for the Adaptable Parser to be developed as a plugin which can be easily

integrated into multiple projects allowing the parser to be used for other applications in

future. Also, with the introduction of Datasmith as part of UE4 and Unreal Studio importing

CAD data into projects is a simple process allowing technical models to be used in the

visualisation. Additionally, UE4 provides free access to source code and has variety of

features designed for use with non-games applications; which may benefit this project.

Figure 2-1 General Interaction of Component
Systems

17

For UAV related technology all early decisions were made with guidance from Cloud3D,

based on how they construct and operate different UAV systems; as these systems are the

target platform being used in development and testing due to the variety of custom designs

they build providing a suitable test set to assess the flexibility of the solution produced. A

key technology decision which had to be made at this stage was which communication

protocols to build supporting middleware for to communicate with UAV flight controllers;

with MultiWii (including its descendants such as CleanFlight and BetaFlight) and MavLink

being selected due to their popularity within the custom UAV industry.

Finally, appropriate technical options for the development of middleware which could be

used to support the visualisation had to be selected. The main consideration being the

selection of a development language which would be suitable for the purposes of this

project; Python has been selected as the development language which was best suited for

developing the required middleware solutions. Due to the wide range of free to use

additional modules in public circulation offering support for specific hardware, and Python’s

wide used in a variety of technical fields (including popularity within the UAV industry).

2.2 Adaptable Parsing Plug-In

When looking at an ‘adaptable’ parser it is first important to define what adaptable means

in the context of this solution. In this case, the parser is adaptable when the application is

not in use, through the use of a series of files which provide key data used to drive the

parsers setup and functionality; the parsing solution as it stands cannot be adjusted at

runtime once its setup has been completed.

In order to provide a flexible solution, the message parsing requirement for the UAV

visualisation was developed as a Plug-in for UE4, developing in this way allowed for a

separation from the visualisation aspect of the project and means that the parsing solution

can be easily reused for other applications unrelated to UAVs if needed in the future.

18

Setting Up Network Components

For developing the parser as a networked solution, the first stage of development was to

determine a method to setup sockets and ports through user specification. This is done

through the use of a JSON file which allows a user to create a network setup file which holds

all required data – this does make some assumption about the user having a basic

understanding of network terms such as the IP address, port numbers and how to find this

information on their system. As it stands for correct setup of the network component the

user needs to provide the following details in the json file:

➢ The application IP

➢ The application Port

➢ The data source IP

➢ The data source Port

The network component itself has been created using the UE4 built in socket library. While

libraries such as Winsock are usable within UE4, using the UE4 specific implementation of

sockets allows a level of abstraction from underlying socket systems of different platforms.

Allowing the developed solution to have a degree of platform independence without

introducing additional work and possible errors into the development process.

The network component is initialised after the required JSON file has been read and the

required data has been identified – should this reading stage fail the socket will be setup

using default values and this read failure will be registered in the application log. The

application will attempt to bind the port to the IP and port number detailed in the file, again

should this fail the reason for failure will be reported in the log.

For protocol use, the system has been setup to use UDP; due to the frequent nature of

updates required to support real-time use. While UDP can have issues with lost messages

and incorrect delivery order these issues can be addressed relatively easily. Lost messages in

a real-time system will quickly become irrelevant so provided good network conditions

where message loss is not an overly regular occurrence this would not be a major issue for

the type of real-time application being produced.

19

As for maintaining messages in the correct order- as this is a more critical requirement for a

real-time visualisation - support for using either a timestamp or a message id number at the

start of the message has been included and can be used by declaring them in the JSON file in

the same way as any other data item present in the expected message which should be

received. Although only UDP support has been implemented, there is scope to extend

functionality to support TCP in future to account for applications where guaranteed delivery

of all messages in order would be a key requirement.

In addition to information used for the direct setup of sockets and ports; the application

requires the user to provide information on the expected data source (the IP address and

Port) in order to introduce a basic check for message integrity. The system implemented will

only attempt to interpret a message which has been received from the expected sender.

This has been introduced to avoid accidental message received creating errors in the data

being used to drive the visualisation, or in extreme circumstances causing fatal errors in the

application. This does not however provide any security against deliberate introduction of

false data into the data stream as the IP address and Port associated with a message could

be relatively easily faked. However, in the context of this project – being only a visualisation

and offering no control over hardware - this risk is minimal and so determining other

security methods to address it was not a high priority during development.

2.2.1 Message Parsing

For the data parsing aspect of the plug-in there were a number of challenges when

considering how to parse a heterogeneous data stream where the number of items, their

type and order cannot be strictly defined within the application itself. The first step to being

to address the needs of a flexible parsing system was to define a method to describe the

expected data stream. Again, making use of a JSON file to store this description of the

message format which the user is expecting to receive from the data source; allowing the

user to detail the data being sent in the order it is present in the message. Providing a name

for each data item - which could be used to identify each item for later for use within

application - and the data type of the item; in order for the parser to be able to interpret the

data stream and make data received usable at runtime.

20

 Once a description for the expected data could be defined and processed correctly by the

plugin, the next issue was how to store the data received. Specifically storing data where

key factors such as number of items and the associated type are not known until runtime.

Data items would have to be stored in a single structure so that all items could be accessed

in the same way to maintain a consistent method for accessing and updating individual

items. This was achieved by designing a structure which contained each object’s name as

define in the descriptor file, an enumerated type to represent the data type needed for this

item, and finally - to store the actual data - a pointer of type ‘void’. By using this type of

pointer, it is possible to reference an item of any datatype; using this to store a pointer to a

container of the correct type for that particular data item, creating the container itself at

runtime based on the datatype needed for that item. This structure is used to collect all data

items together for storage using UE4s built in ‘TArray’ which can be used like a vector e.g.

increasing and decreasing in size without redeclaring, but is also usable within the blueprint

system in UE4. This store of data can then be searched for specific items using the stored

name associated with the needed data item.

This storage system was used to account for the undefined number of data items which may

be used. In the context of this project the ‘TArray’ was an appropriate structure as the

number of data items which may be needed is relatively low, but for large collections of

data it could be more efficient to use a map structure where searching based on the value of

a key is built in and provides better performance over a large data collection.

2.3 MultiWii Connecting Middleware

In order to support early development, a system for

using realistic data in a desktop setup was needed.

This requirement was met by building a basic flight

controller unit using an Arduino Nano and an IMU

sensor (see appendix 1) using the MultiWii Serial

Protocol (MSP).

Figure 2-2 Arduino Nano flight controller

21

In order to maintain platform independence, it was determined that an appropriate method

to provide access to the real-time data from this hardware setup was through the

development of a small middleware application. This was done using Python to develop a

command driven application, due to the existing MultiWii support and modules available

publicly online (for additional required libraries installed see appendix 2). Connection to the

hardware was done using serial bus connections, which could be easily supported including

checks and display on only valid available serial bus options to avoid guesswork when

selecting the required COM port for connecting to the flight controller.

The middleware produced works as a networked solution and like the parsing plug in

previous discuss it handles socket setup at runtime but using a different method. Due to

Python being an interpreted language and the middleware being a console-based solution, it

is relatively simple to wait and collect the required IP and port information through

requesting user input through the console and using this to set up ports and sending

addresses as needed. The middleware solution produced is has support to use additional

sensors other than those included on the specific flight controller being used, this is done

through a list of possible options for sensor data which can be requested through the

MultiWii Serial Protocol. This was to allow this piece of middleware to support various

combinations of commonly available sensors on a MultiWii based flight controller but

without requesting data unnecessarily e.g. if a sensor is not present only a default value

would be returned on every data request.

22

2.4 Visualisation Application

The visualisation application has been built to act only as a digital reflection of the UAV in

use; with the purpose of improving the usability of the existing data already produced by

UAV systems. Looking at how to represent data in visual formats to provide ease of

understanding and reduce the mental load of interpreting the data to allow operators to

better prioritise and understand the data being received.

2.4.1 Movement Replication

The first step for creating a useful visualisation of UAV in flight is for the digital model to

replicate the physical movement of the hardware in use. For orientation of the system, the

needed data can be easily sourced from the IMU... which provides gyroscope data as pitch,

roll and heading/yaw of the device. The challenge when replicating the movement comes

from variations in the heading/yaw value compared to the visible front of a device which

will be different between UAVs and even on the same hardware after calibration changes. In

order to account for this variation orientation is taken using changes in the heading value

compared to the first instance of orientation data which is received, positioning the digital

model on the screen with the assumption that the user is beginning with the physical device

in front of them facing forward -as this a common and safe practise when operating UAVs in

most circumstances.

Figure 2-3 layout mock-up of visualization application (further detail see
Appendix 3)

23

In addition to mimicking orientation in real-time, replication of the UAVs translational

movement is needed for communicating position and movement information to operators.

For this application, translational movement exists where there is GPS data which provides

the needed values to calculate device positioning within the digital space. This conversion of

GPS data into a local Cartesian coordinate system is a key part of maintaining a meaningful

representation of the UAVs movement, and requires a series of calculations. GPS data must

first be converted into a Geocentric format (also called Earth Centred, Earth Fixed -ECEF),

this allows Latitude, Longitude and Altitude to be represented in a Cartesian format where

the centre of the earth is the origin. This is to large scale for this application to make use of;

so this much then be converted into a smaller region of local coordinates, using the first

ECEF coordinate received as the origin of the local system where all following locations will

be calculated relative to this first point, for the purposes for this application the North East

Down (NED) coordinate system has been used (see figure 3.5).

Converting GPS to ECEF

A = radius at the Equator = 6378137

f = flattening = 1/298.257224

e = eccentricity = √(2f *f2)

C = 1/√(cos2(Lat)+(1-f)2*sin2(Lat))

S = (1-f)2 *C

ECEF:

 X = (aC+h)*cos(Lat)*cos(Long)

 Y = (aC+h)*cos(Lat)*sin(Long)

 Z = (aC+S)*sin(Lat)

ECEF to NED

NED = RT(PECEF – Pref)

R = ቎
− 𝑠𝑖𝑛ሺ𝜙ሻ 𝑐𝑜𝑠⁡ሺ𝜆ሻ −𝑠𝑖𝑛⁡ሺ𝜆ሻ − 𝑐𝑜𝑠ሺ𝜙ሻ 𝑐𝑜𝑠ሺ𝜆ሻ

− 𝑠𝑖𝑛ሺ𝜙ሻ 𝑠𝑖𝑛⁡ሺ𝜆ሻ 𝑐𝑜𝑠⁡ሺ𝜆ሻ − 𝑐𝑜𝑠ሺ𝜙ሻ 𝑠𝑖𝑛⁡ሺ𝜆ሻ

𝑐𝑜𝑠⁡ሺ𝜙ሻ 0 −𝑠𝑖𝑛⁡ሺ𝜙ሻ

቏

λ⁡=⁡Longitude

ϕ = latitude

Figure 2-4 GPS to NED conversion

24

2.4.2 GPS map

An important aspect for a useful flight visualisation, is the ability to

monitor the world location of the UAV which can be important in case

of accidents which may cause equipment to become inoperable. For

this purpose, it was important to include map functionality to reflect

the location received from the UAV as GPS coordinates, as part of the

User Interface.

The mapping component of the user interface use a selection of

prebuilt tiles which are image files loaded when needed during

runtime; using an image loading node from the ‘Victory Plug-in’(Rama)

as Texture2D types within the application. Tiles loading information is

provided by a JSON file which is stored alongside the image files; this

JSON file details key information about each tile including:

➢ Image file name

➢ Minimum Latitude and Longitude covered

➢ Maximum Latitude and Longitude covered

Tiles were created using a series of static images covering the desired

area, extracted from the Open Street Map project. In this instance this has been done

manually, but an automated solution could be developed to handle tile creation as a

supporting tool for the visualisation applications long term usability and practicality. Storing

tiles locally was determined to be a more practical solution than remote storage or an

internet-based system due to the context of this project; UAV systems are often operated

on sites where data connectivity and suitable speeds can be common issues.

For tracking the location of the UAV against the map, the appropriate tile is selected based

on a comparison between the current Latitude and Longitude, and the maximum and

minimum bounds covered by each tile (see figure 3.6) until one with the require location in

its ranges identified or no tile is able to cover the needed coordinates (this is registered in

Figure 2-5 2D map functionality

25

the log file should this occur). The known location is then used to create a positioning value

for the marker on the map.

2.4.3 Speed Display

Using a digital format to display the speed data; while extremely simple for creating the

asset and updating it with new data as it is received. In order to make this element as useful

as possible; additional consideration is needed for how display data is updated. The raw

data being received provided floating point accuracy; however, this level of accuracy can be

excessive for a real-time display and can be detrimental to the overall usability due to

constantly changing values unnecessarily drawing the users attention. For this reason, using

only integers in the display is a more suitable design choice; but if using standard rounding

methods this fluctuation in display values is still present. To reduce this visible fluctuation a

rounding method using hysteresis has been employed (see figure 3.7), widening the range

of values which will trigger rounding direction changes taking account of the general trend

of the previous data received.

𝑴𝒂𝒓𝒌𝒆𝒓𝑳𝒐𝒄⁡ = ⁡
𝑴𝒂𝒙𝑳𝒂𝒕𝑳𝒐𝒏𝒈 − 𝒄𝒖𝒓𝒓𝒆𝒏𝒕𝑳𝒂𝒕𝑳𝒐𝒏𝒈

𝑴𝒂𝒙𝑳𝒂𝒕𝑳𝒐𝒏𝒈 −𝑴𝒊𝒏𝑳𝒂𝒕𝑳𝒐𝒏𝒈
∗ 𝑴𝒂𝒙𝑫𝒊𝒔𝒑𝒍𝒂𝒚𝑷𝒐𝒔;

Figure 2-6 2D map marker position

1.0 Determine Rounding method

1.0 Get decimal component of Speed

1.1 If decimal component ≥ 0.7

1.1.1 ROUND UP

1.2 Else if decimal component ≤ 0.3

1.2.1 ROUND DOWN

1.3 Else

1.3.1 Leave rounding method unchanged

2.0 Determine display value

2.0 If ROUND UP

2.0.1 Display int = int Component of speed +1;

2.1 Else

2.1.1 Display int = int Component of speed

Figure 2-7 rounding with hysteresis

26

2.4.4 Measuring Distances in Flight

When operating a UAV there are 2 main distances which are important and typically

monitored by the user:

➢ Distance to Home

➢ Total Ground distance covered

The distance to home measures the straight-line distance between the current location and

the starting location, so that operators can ensure they have enough battery power to safely

return. While the total ground distance covered, measures the total distance flown by the

UAV including areas where the operator may have backtracked over multiple times.

Both of these distances are calculated using a spherical model of the earth (this is not

entirely accurate due to the actual shape of the earth) and the haversine formula (see figure

3.8) which provides a reasonable degree of accuracy for the purposes of this application.

a = sin2(Δlatitude/2)+cos(lat1)*cos(lat2)*sin2(Δlongitude/2ሻ

c⁡=⁡2*atan2ሺ√a,√ሺ1-a))

d = R*c

R= Radius of the Earth

Figure 2-8 haversine formula (GIS MAP INFO, 2015),

27

Planned Testing

2.4.5 Adaptable Parser Testing

In order to assess the functionality of the adaptable parser a series of tests have been

planned to address key requirements for the plug-in. An important area for testing is the

quality of the results produced by the parser, in terms of the accuracy and the predictability

of production of accurate data. This will be assessed by logging data of core data types on

both the sender and the results produced by the parser for comparison. This testing will be

conducted over a variety of network conditions to assess the parsers performance under

common network conditions such as the local machine, local network and between setups

using different hardware e.g. processors from different manufacturers.

2.4.6 Visualisation Testing

The main testing planned for the visualisation was to conduct field testing using a custom-

built drone with a variety of safety features including stabilisation and an autopiloted return

to home functionality. The presence of these additional safety features on the planned

hardware was useful for planning field testing as using these features would allow more

attention to be given to the function of the visualisation and checking live data values while

maintaining safe operational conditions.

However due to current events which have prevented field testing of the visualisation under

operational conditions from being able to take place; testing has to be conducted by using a

collection of dummy data combined with desktop safe UAV hardware, to replicate what

would be expected from a UAV in flight. With the assumption of functionality working as

expected based on results of how elements of the visualisation respond to extreme and

exceptional data being provided in this controlled desk-based environment. In addition to

testing the predictability, and functionality of individual elements behaviour, the

visualisation will be assessed on its overall design, including the ease of locating specific

data and comparison to existing UAV monitoring systems.

The following chapter will discuss these planned testing methods carried out in more detail,

and the results achieved.

28

3 Results and Discussion

This section provides further detail on planned testing previously discussed; including the

testing methods used, any adjustments to the planned methods which had to be made to

account for various restrictions which were in place and the results which were seen.

Further to discussion of the results seen; additional testing, implementation changes or

future work which would still be of benefit to this project will also be covered.

Due to the nature of the solution produced, testing looked at two of the main components

produced separately, the Adaptable Parsing Plugin, and the visualisation, before making an

assessment on the function of the complete solution produced.

3.1 Measuring the Accuracy of Conversion Within the Parser

When testing the parser, the main requirement which had to be assessed was that the

parser should maintain accurate conversions of data from the bytes received into usable

items of the required types. To establish if this has been achieved the parser was tested

under a variety of conditions, including different network setups and using different

hardware of various ages from different manufacturers where possible. This was done to

better assess the accuracy and stability of the parser as a networked solution across systems

with commonly seen differences. Some of the specifics relating to the hardware used has

been detailed in table 1.

Test Setup Component Type

Local
Machine

Sender
&

Receiver

CPU
Ryzen 7 3800X 8-Core
(3.9Ghz)

RAM 32Gb

GPU GeForce RTX 2070 Super

Local
Network.1

Sender

CPU
Ryzen 7 3700X 8-Core
(3.6Ghz)

RAM 32gb

GPU GeForce GTX 980 Ti

Local
Network.2

Sender

CPU
Intel Core i7-5500U 2-
Core
(2.4Ghz)

RAM 16Gb

GPU GeForce 920M

Table 1 Hardware used for parser testing

29

Each setup was used to run the same collection of tests, with a Python script generating

random data for each datatype being used, which was then packed into single collection of

bytes for sending to the parser as a UDP. It was important to ensure testing produced

sufficient data samples in order to provide enough data to be able to properly assess the

accuracy achieved by the parser, the number of samples produced when testing a single

hardware setup has been listed here:

• Boolean :: 12000 samples

• Char :: 8000 samples

• Short :: 12000 samples

• Integer :: 12000 samples

• Float :: 12000 samples

• Double :: 12000 samples

To assess the accuracy obtained when converting from the byte array received by the

parser, back into data items of the required datatypes; both the sending application and the

parser maintained a log of their data to be used for the comparison. This comparison found

that across all tests and setups, no accuracy was lost on any of received data for Boolean,

Char, Short or Integer values. However, across all tests there was some loss of accuracy seen

in regard to the Float and Double values. This accuracy loss remained stable across all test

sets, and both datatypes saw extremely similar degrees of accuracy being lost. While this

loss of accuracy is not ideal it is predictable and stable so can be accounted for during

application design and implementation by considering the predicted error margins this

accuracy loss creates. The specific results seen when looking at the data for Floats and

Doubles can be seen in Table 2 and figure 4.1. With the accuracy loss only being seen in

these two data types, and considering the consistency of the loss observed, it is possible

that the cause of this is coming from the logging stage rather than the parsers byte

conversion. As the logging stage of the parser is converting the float and double values into

a text representation, which can introduce rounding errors; which would account for the

consistency seen in the results.

30

 Mean
Standard

Dev.
Min Max Q1 Median Q3

Local

Machine

Float 2.49143E-07 1.45846E-07 0 5E-07 1.25E-07 2.5E-07 3.75E-07

Double 2.50836E-07 1.44753E-07 0 5E-07 1.27575E-07 2.50465E-07 3.76662E-07

Local

Network.1

Float 2.49931E-07 1.44131E-07 0 5E-07 1.25E-07 2.5E-07 3.75E-07

Double 2.4826E-07 1.44548E-07 1.89175E-10 4.9995E-07 1.23384E-07 2.46736E-07 3.74213E-07

Local

Network.2

(laptop based)

Float 2.51046E-07 1.45026E-07 0 5E-07 1.25E-07 2.5E-07 3.75E-07

Double 2.52579E-07 1.4536E-07 4.00178E-11 4.99949E-07 1.2596E-07 2.54085E-07 3.79227E-07

Table 2 conversion accuracy results – floats and doubles

0.00000000

0.00000010

0.00000020

0.00000030

0.00000040

0.00000050

Float Double Float Double Float Double

Local PC Local Network Laptop Based

D
IF

FE
R

EN
C

E
B

ET
W

EE
N

 O
R

G
IN

A
L

A
N

D
 R

EC
IE

V
ED

 D
A

TA

Conversion Accuracy Variation

Mean

Figure 3-1 Conversion Accuracy Charted Results

31

3.2 Visualisation Testing

For testing the visualisation application – the final layout can be seen in figure 4.2 - all

testing had to take place in a desktop environment due to external restrictions. This has

created some limitations on what aspects of the visualisation solution could be thoroughly

tested; as operational conditions could not be completely replicated within the testing

environment in use. The main areas of the visualisation application which were considered

during testing were the overall UI design. The functionality of specific UI elements and the

complete application using live data from a variety of hardware options.

Due to the limitations imposed by conducting all testing in a desktop environment there

were particular data items which could not be produced in real-time from the target

hardware; specifically, GPS and connection data. While UAV setups with the required

hardware and protocols were available, in the test environment being used this data would

not be stable due to being indoors preventing a proper satellite lock, nor would it have a

wide enough variation to support the degree of testing needed for specific functionality. In

order to account for these limitations, a collection of test data was compiled to provide the

necessary variation for functionality dependant on the data affected to be properly tested.

Looking first at specific UI elements of the visualisation, elements were tested to ensure

that the functionality, calculations and behaviour remained correct and predicable even

when dealing with exceptional data and circumstances.

Figure 3-2 visualisation in use

32

3.2.1 GPS Driven Functionality

There were 3 key UI elements which made use of GPS data to drive functionality, the 2D

map, flight distance and speed monitoring functionalities. These elements had to make use

of collected test data rather than real-time UAV data. The test data provided a number of

routes using real GPS locations to allow for the distance, speed and mapping calculations

produced by the application to be compared with known values collect from Strava - a

popular mobile application used to log activities such as running using GPS tracking. Data

was collected from various activity logs created using the mobile Strava app, by using data

exported from this platform it was relatively easy to perform the needed comparisons to

confirm functionalities were operating as expected. It also allowed test data from a wider

variety of locations than would have been possible using only data from UAV hardware, e.g.

data covering London, Paris and Loch Ness was used during testing.

3.2.2 2D Map Location

The mapping functionality, when tested using the collected GPS data, does show a good

level of accuracy while placing markers relative to the map tile being displayed. With the

marker maintaining the expected path on the streets and roads on the map, in all test cases.

When testing for potential sources of error using rounded and extreme values, the marker

placement was predictably affected by the quality of the data received (referring to the

floating point accuracy of the GPS data), this would be expected in any system using

Latitude and Longitude values due to the level of accuracy needed to pin point world

locations, even small variations in values will result in miscalculated locations.

3.2.3 Distance Monitoring

For distance calculations, the overall distance calculated did occasionally lose a small degree

than what would be expected if using live data, due to the significantly lower update rate of

the test creating a more generalised line when tracking the UAV. However, it has to be

considered that due to the speeds which can be achieved by a UAV in flight the distances

covered between updates could be much larger than those seen in data which was collected

from human movement. This combined with the occasional lost UDP message means that

this small loss of accuracy may still be seen in operational conditions, however it was not a

major issue and again is commonly seen in GPS driven calculations.

33

It is also worth considering that with the target update rate of 15-20hz from a UAV, it may

not be an efficient practise to be updating the distance calculations with every update as

the degree of accuracy produced may not be sufficient to justify the overheads of the

calculations required. Unfortunately, it was not possible to fully test for this potential

efficiency issue and if recalculating distances every updated offered particular benefit under

operational conditions.

3.2.4 Ground Speed Calculations

Following on from monitoring distances travelled, it was important to communicate the

current ground speed of the UAV to the operator. While some flight controllers may have

this value as a requestable data item, not all provide this data. So to provide this

functionality the speed is being calculated using the time between updates and positional

changes to provide the speed in KPH, these values were again compared against those

obtained from the original Strava data and it was seen this method maintained a good level

of approximation, as the value displayed was being run through the rounding with

hysteresis there was the occasion discrepancy but no severe variations. This rounding

method was being used to reduce the flickering which can otherwise be seen when using

standard rounding methods. Its use did greatly improve the usability of the element by

preventing the user’s attention from being unnecessarily drawn to the speed display by near

constant movement. The hysteresis rounding method itself was tested early in development

by feeding a separate collection of false speed values with small variations which would

normally trigger rounded values to flicker, this effect was greatly reduced through the use of

hysteresis to control the rounding direction in use.

3.2.5 General Observations during Element Testing

While of great use during this testing stage, the use of Strava data did not completely

replace the expected data from an operational UAV particularly when considering the

update rates being used. With the collected Strava data typically having one update every

second, while the target update rate from an operational UAV being considered is 15-20

updates per second. This difference in data update rate did result in much more sporadic

movement and calculations, but this was taken into consideration when assessing the

results of testing.

34

However, the presence of this sporadic movement allowed for smoothing and predication

systems to be developed and tested to help reduce visual jitters due to missed data updates

from the network. Despite the value of using Strava data during testing, further testing with

live data is still desirable to properly review the functionality of UI elements in true

operational conditions. Although it can be reasonably expected from the results seen that

elements will continue to function correctly when provided with live data, but may

encounter issues stemming from the live update process and this may only be noticeable in

specific operation conditions which could not be replicated in the test environment.

3.3 Whole Solution

Multiple hardware systems have been used while testing the produced components as a

functional system, details on the UAV hardware used is provided in table 3. This was done

in order to test and demonstrate the flexibility of the system produced, through working

with a variety of hardware and protocols in both development and testing. This was the last

stage of testing conducted, integrating hardware, middleware and the visualisation together

as a complete solution. Working in a manner as similar to its intended use under operation

conditions, to demonstrate and test elements functionality as a single unified solution.

Paying particular attention to maintaining a useable framerate and smooth motion of 3D

elements, and accounting for predictable issues such as missing individual data items or

message loss, without the system becoming unusable.

Setup Name Protocol Available Data Available

Arduino Flight Controller MSPv2 IMU

Racing Drone MSPv2 IMU
Motors
Battery

Cloud3D Small UAV MSPv2 & Mavlink IMU,
Battery,
GPS

Table 3 testing hardware

3.3.1 Functional Testing

Overall functional testing of the complete system was successful, regularly maintaining a

framerate above 90fps and easily exceeding the target frame rate of 60fps. The main issue

observed during the functional testing when using different hardware, is that the UI

elements as they currently stand are predictably dependant on receiving the correct data

35

through the network messages received. When working with systems where particular data

items such as the current battery level or GPS data was not available these elements were

non-functional, but are still present on the screen and would be periodically requesting data

from the parsers and receiving default values to indicate that data items were not present.

This can be both confusing to the user and does not support maintaining an efficient

application. Whether data is available is dependent on both the hardware in use on the UAV

system, but also on the protocol being used. During testing both MSPv2 and MavLink

protocols were used, with MavLink being the preferred target protocol for the end solution

due to the wider selection of data items available through its use.

While this did not cause any noticeable functionality issues for the visualisation application;

some elements could be misleading to an operator as they are still present. When working

with systems where it is known that particular data items will not be available – e.g. racing

drones typically don’t support GPS data -it would be a desirable feature to be able to disable

the associated displays for absent data. The disabling of unused UI elements would help to

support maintaining an efficient system by reducing or removing the overhead generated by

these unused elements; and could improve the end users experience by decluttering the

viewport leaving only the data relevant to the UAV system in use.

The adaption of displayed items is an interesting area for further development, where

identifying an appropriate approach is an important aspect for creating a practical system

for operators. Two general approaches could be viable options but need further

consideration before attempting to implement within the visualisation. Either looking to

integrate a setup stage for the selection of UI elements or automatically culling unused

elements could be workable solutions, but both have drawbacks. The first method would

introduce more setup work in addition to that already existing when setting up the parser

and the connection to hardware, this additional setup work may not be desirable

attempting to carry out operation flights. While the second approach risks introducing

additional debugging work for operators, if an element is just not present when it was

expected, the operator would have to spend time attempting to identify if its absence is due

to a fault in the software execution, setup or a hardware fault.

36

4 Conclusion

This project aimed to build on the current growth of game technology-based solutions in

non-games industries; specifically looking at the applications of commercial UAVs a sector

where the hardware, software and purpose of systems can vary hugely. Part of this variation

includes the data requirements and data streams produced. This project aimed to

demonstrate a potential application of games technology within the UAV industry; by

developing a game engine driven real-time visualisation of a UAV system, while maintaining

a high level of flexibility in the data stream being used to drive functionality.

The solution produced provided a parser which could be adapted to allow different message

structures to be used when sending data via UDP messages. This enabled the visualisation

to be used with data streams with varied data formats to support different UAV systems

use. The adaptable parser has been developed as an engine plug-in and remains separate

from the purpose of the application, and so could be used for developing other applications

within the engine with no connection to the complete solution produced for this project.

Overall as a visualisation, the solution did provide and maintain the key data needed when

monitoring a remote UAV, and has demonstrated that game engines are capable of

providing the necessary resources and functionality for developing these types of

applications. While desk-based tests have proved promising, a key objective of this project

was to evaluate the effectiveness of the solution for supporting safe operation of UAVs.

However due to restrictions put in place during development and testing, it was not possible

to carry out the flight tests needed to be able to evaluate effectiveness of the solution

under operational conditions so no comments can be reasonably made on this.

4.1 Limitations and Future Work

There are limitations and scope for future improvements across the components produced

as part of this solution, some of these are discussed below.

The parser is limited to handing a select list of data types commonly used in C++

applications, and data types out with this currently are not supported, expanding the

supported data types is an obvious area for expansion. As a networked solution the parser is

also limited by the minimal security offered by the current setup, further development to

37

support the use of common network message security measures such as checksums would

be valuable for creating a more robust solution with a wider variety of possible applications.

The visualisation, while suitable as a demonstration of a potential application of games

technology for real-time monitoring of varied UAV systems; it is far from a complete

solution as it currently stands. Expansions to alter UI elements being displayed, the choice

of digital model at runtime would all be beneficial to the function of the application and the

User experience. There is also potential to improve the mapping solution implemented to

be an internet-based request of maps rather than a predefined collection of tiles, to reduce

the preparation work needed by an operator prior to flying in a new area. When considering

representation UAVs there is also a huge variety of potential data which is not being used

which could be of benefit – such as replicating lights and peripheral devices fitted to

systems.

While the aim of this project was to produce as flexible system as was reasonable, there is

the possibility to develop a more UAV focused system for incorporating data streams from

specific protocols such as MultiWii or MavLink, and thus negate the need for middleware or

the parser implemented.

38

5 List of References

CAA (2015) Unmanned Aircraft and Drones. Available at:

https://www.caa.co.uk/Consumers/Unmanned-aircraft-and-drones/ (Accessed: Nov 3,

2019).

Campanile, F., Cilardo, A., Coppolino, L. and Romano, L. (2007) Adaptable Parsing of Real-

Time Data Streams.

Crecente, B. (2016) McLaren now uses Epic's Unreal Engine to help design its high-end

cars. Available at: https://www.polygon.com/2016/3/16/11246586/mclaren-unreal-

engine-design (Accessed: Feb 4, 2020).

Federal Aviation Administration (2019) Unmanned Aircraft System. USA: Federal Aviation

Administration. Available at:

https://www.faa.gov/data_research/aviation/aerospace_forecasts/media/unmanned_air

craft_systems.pdf (Accessed: Dec 4, 2019).

Haversine Formula – Calculate geographic distance on earth. (2015) Available at:

https://www.igismap.com/haversine-formula-calculate-geographic-distance-earth/

(Accessed: Apr 6, 2020).

Kyoung-Dae Kim and Kumar, P.R. (2013) 'Real-Time Middleware for Networked Control

Systems and Application to an Unstable System', IEEE Transactions on Control Systems

Technology, 21(5), pp. 1898-1906. doi: 10.1109/TCST.2012.2207386.

Loo, B., Condie, T., Garofalakis, M., Gay, D., Hellerstein, J., Maniatis, P., Ramakrishnan, R.,

Roscoe, T. and Stoica, I. (2009) 'Declarative Networking', Communications of the ACM;

Commun.ACM, 52(11), pp. 87-95. doi: 10.1145/1592761.1592785.

Minden, G., Komp, E., Ganje, S., Kannan, A., Subramaniam, S., Tan, S., Vallabhaneni, S. and

Evans, J. (2002) Composite protocols for innovative active services.

39

Sloan, K. (2018) BMW Brings Mixed Reality to Automotive Design with Unreal Engine.

Available at: https://www.unrealengine.com/en-US/spotlights/bmw-brings-mixed-reality-

to-automotive-design-with-unreal-engine (Accessed: Dec 29, 2019).

Swatch (2018) The Swatch DRL Try-outs - Swatch® United Kingdom. Available at:

https://www.swatch.com/en_gb/explore/swatch-sports/articles/the-swatch-drl-tryouts/

(Accessed: Feb 13, 2020).

40

6 Bibliography

(2017) OpenStreetMap. Available at:

https://wiki.openstreetmap.org/wiki/About_OpenStreetMap (Accessed: 03/11/2019).

Microsoft Built-in types (C++). Available at: https://docs.microsoft.com/en-

us/cpp/cpp/fundamental-types-cpp (Accessed: Jan 9, 2020).

MultiWii Wiki. Available at: http://www.multiwii.com/wiki/index.php?title=Main_Page

(Accessed: 03/11/2019).

Rama (2014) (39) Rama's Extra Blueprint Nodes for You as a Plugin, No C++ Required!

Available at: https://forums.unrealengine.com/development-discussion/blueprint-visual-

scripting/4014-39-rama-s-extra-blueprint-nodes-for-you-as-a-plugin-no-c-required

(Accessed: Mar 15, 2020).

Rama. (2019) VictoryPlugin23 [1]. Available at:

http://www.mediafire.com/file/2jedu15w6p3emz8/VictoryPlugin23.zip/file (Downloaded:

Mar 15, 2020).

41

7 Appendices

7.1 Appendix 1 - Desktop flight controller

A MultiWii based flight controller was built to support the initial development, allowing

limited live data to be collected and sent over the network. Using a specific set up of a

popular UAV flight controller software, connected to the testing pc through a serial port.

Components Used Purpose

Arduino Nano V3.0 Main component for running flight controller software

GY-521 MPU-6050 Gyroscopic and angular acceleration data

Table 4 flight controller components

Figure 7-1 flight controller wiring

42

7.2 Appendix 2 – Required Python Libraries

When building middleware for connecting to specific hardware – such as the Desktop flight

controller – particular Python libraries has to be installed to support or provide the

development of the required functionality.

➢ Keyboard

➢ Schedule

➢ Socket

➢ Serial

➢ WiiProxy

➢ csv

➢ MavLink

43

7.3 Appendix 3 – Visualisation User Interface Design

